Endosimbiosis serial

Recomendar esta página Ver en PDF Imprimir esta página
Wiki de astronomía.
Todo el poder de la Wikipedia y toda la esencia de la astronomía

Endosimbiosis serial

De Wikipedia, la enciclopedia libre

La teoría endosimbiótica o endosimbiosis serial es una teoría formulada por Lynn Margulis en 1967, quien describió el origen simbiogenético de las células eucariotas. Éste se conoce por el acrónimo SET (Serial Endosyrnbiosis Theory).

En la actualidad, esta teoría es mayoritariamente aceptada y se considera probada en sus tres cuartas partes (la incorporación de tres de los cuatro endosimbiontes descritos por Margulis).

Tabla de contenidos

[editar] La teoría

La SET describe el paso de las células procariotas (células bacterianas, no nucleadas) a las células eucariotas (células nucleadas constituyentes de los procariontes y componentes de todos los pluricelulares) mediante incorporaciones simbiogenéticas

Margulis describe este paso en una serie de tres incorporaciones mediante las cuales, por la unión simbiogenética de bacterias, se originaron las células que conforman a los individuos de los otros cuatro reinos (protistas, animales, hongos y plantas).

Según la estimación más aceptada, hace 2.000 millones de años (aunque una horquilla posible podría descender a la cifra de 1.500 millones de años) la vida la componían multitud de bacterias diferentes, adaptadas a los diferentes medios. Margulis destacó también, la que debió ser una alta capacidad de adaptación de estas bacterias al cambiante e inestable ambiente de la Tierra en aquella época. Hoy se conocen más de veinte metabolismos diferentes usados por las bacterias frente al único usado por los pluricelulares: el aeróbico (que usan el oxígeno como fuente de energía; las plantas utilizan dos: aeróbico y fotosíntesis). Para Margulis, tal variedad revela las dificultades a las que las bacterias se tuvieron que enfrentar y su capacidad para aportar soluciones a esas dificultades.

Primera incorporación simbiogenética:

Una bacteria consumidora de azufre, que utilizaba el azufre y el calor como fuente de energía (arqueobacteria fermentadora o termoacidófila), se fusionó con una bacteria nadadora (espiroquetas) pasando a formar un nuevo organismo sumando sus características iniciales de forma sinérgica (en la que el resultado de la incorporación de dos o más unidades adquiere mayor valor que la suma de sus componentes). El resultado fue el primer eucarionte (unicelular eucariota) y ancestro único de todos los pluricelulares. El núcleocitoplasma de la células de animales, plantas y hongos sería el resultado de la unión de estas dos bacterias.
A las características iniciales de ambas células se le sumó una nueva morfología más compleja con una nueva y llamativa resistencia al intercambio genético horizontal. El ADN quedó confinado en un núcleo interno separado del resto de la célula por una membrana.

Segunda incorporación simbiogenética:

Este nuevo organismo todavía era anaeróbico, incapaz de metabolizar el oxígeno, ya que este gas suponía un veneno para él, por lo que viviría en medios donde este oxigeno, cada vez más presente, fuese escaso. En este punto, una nueva incorporación dotaría a este primigenio procarionte de la capacidad para metabolizar oxigeno. Este nuevo endosombionte, originariamente bacteria respiradora de oxigeno de vida libre, se convertiría en las actuales mitocondrias y peroxisomas presentes en las células eucariotas de los pluricelulares, posibilitando su éxito en un medio rico en oxígeno como ha llegado a convertirse el planeta Tierra. Los animales y hongos somos el resultado de esta segunda incorporación.

Tercera incorporación simbiogenética:

Esta tercera incorporación originó el Reino vegetal, las recientemente adquiridas células respiradoras de oxígeno fagocitarían bacterias fotosintéticas y algunas de ellas, haciéndose resistentes, pasarían a formar parte del organismo, originando a su vez un nuevo organismo capaz de sintetizar la energía procedente del Sol. Estos nuevos pluricelulares, las plantas, con su éxito, contribuyeron y contribuyen al éxito de animales y hongos.
En la actualidad permanecen las bacterias descendientes de aquellas que debieron, por incorporación, originar las células eucariotas; así como aquellos protistas que no participaron en alguna de las sucesivas incorporaciones.

Esta teoría descansa, entre otras pruebas, en la existencia de ADN circular muy parecido al bacteriano y de ribosomas típicos de las bacterias (ribosomas tipo 70s)

[editar] Antecedentes del origen simbiogenético de las eucariotas

En 1893, el biólogo alemán Andreas Schimper propuso que la capacidad fotosintética de las células vegetales podía proceder de cianobacterias aun presentes en la naturaleza y con iguales capacidades.

A principios del siglo XX Ivan Wallin (anatomista estadounidense) llegó a la misma conclusión, y en 1910 Kostantin S. Mereschovky presentó la hipótesis según la cual el origen de las células eucariotas se encontraba en la fusión de varias bacterias diferentes.

En 1918 el biólogo francés Paul Portier llegaría a la conclusión de que las mitocondrias de las eucariotas habrían sido en su día bacterias de vida libre, ahora confinadas en el interior de estas eucariotas; Willin llegaría en 1925 a la misma conclusión.

Estos trabajos, minusvalorados en su tiempo, permanecieron olvidados hasta que Margulis, apoyándose el ellos, poniendo énfasis en las capacidades de las bacterias y la potencialidad de la simbiosis, formulara en 1967 la SET.

[editar] Presentación y alcance de la teoría

Margulis presentó en 1967 su teoría sobre el origen de las células eucariotas mediante un artículo en la revista Journal of Theoretical Biology: «Origin of Mitosing Cells»;. Antes, diferentes trabajos sobre esa misma teoría le habían sido rechazados en quince ocasiones y fue la directa intervención de su editor James F. DaNelly lo que posibilitase al fin su publicación. Max Taylor, especializado en protistas, profesor de la Universidad de British Columbia, la bautizó con el acrónimo SET (Serial Endosyrnbiosis Theory), nombre por el que hoy es conocida.

Margulis también tuvo problemas para publicar un segundo texto más extenso ya en forma de libro: Origin of Eukaryotic Cells;, el que en 1970 publicara Yale University Press.

Margulis apoyó su teoría en numerosos datos sobre bioquímica y morfología (investigaciones de otros científicos y de ella misma), también la apoyó en datos paleontológicos y presentó un proceso coherente valiéndose de los descendientes (aun entre nosotros) de aquellas bacterias que plausiblemente lo protagonizaron.

En el momento en que Margulis presenta su teoría para el evolucionismo únicamente existen animales y plantas, las bacterias únicamente son del interés de una rama de la medicina: la bacteriología médica; y únicamente algunos protozoos y hongos son clasificados por diversos botánicos como plantas. En este contexto, su trabajo es rechazado por la ortodoxia del evolucionismo; el paso de procariotas a eurocariotas no entrañaba ningún problema especial de comprensión para el neodarwinismo: “lo mismo que una especie puede aumentar paulatinamente de tamaño, aumentar su complejidad y adquirir nuevas funcionalidades también paulatinamente; los procariotas habrían aumentado su tamaño, aumentado su complejidad y adquirido nuevas funcionalidades, todo paulatinamente y como consecuencia de errores en la replicación de su ADN“. No se contaba con ninguna prueba de que esto hubiese sido así, pero se daba como un hecho cierto que había sucedido así. Cuando Margulis plantea su teoría y surgen los primeros apoyos cuando el neodarwinismo siente la necesidad de formular una teoría alternativa ajustada a su paradigma, y para ello utiliza el escenario descrito por ella para justificar tal paso: un medio “caótico“, inestable y cambiante; un medio que justificaba una alta competencia favorecedora de tan radicales cambios. Desde entonces desde el neodarwinismo se han ofrecido numerosas teorías alternativas.

La SET ha necesitado treinta años para ser aceptada mayoritariamente como plausible, cuando las tres cuartas partes de la teoría se han considerado demostradas (la adquisición de bacterias nadadoras no se considera probada). No obstante, existe, y tiene sus seguidores, una versión del paso de procariotas a eurocariotas que sólo admite como posible adquisición simbiótica la capacidad fotosintética; y en todo caso, desde el neodarwinismo, la capacidad motora de las eucariotas (insuficientemente demostrado su origen simbiogenético) se considera producto de mutaciones al azar.

También existen otras teorías del origen simbiogenético de las eucariotas (Timan Hartman del Ames Research Center de la NASA y Radney Gupta de la Universidad MacMaster) defienden el origen simbiótico del núcleo. Para Margulis el origen del núcleo se debe a la interacción de los dos primeros simbiontes que elaborarían esas membranas a modo de barrera que impidiera su total fusión.

[editar] Bibliografía

  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts y Peter Walter, Molecular Biology of the Cell, Garland Science, Nueva York, 2002. ISBN 0-8153-3218-1.
  • Jeffrey L. Blanchard and Michael Lynch (2000), “Organellar genes: why do they end up in the nucleus?”, Trends in Genetics, 16 (7), pp. 315-320.[1]
  • Paul Jarvis (2001), “Intracellular signalling: The chloroplast talks!”, Current Biology, 11 (8), pp. R307-R310. [2]
  • Fiona S.L. Brinkman, Jeffrey L. Blanchard, Artem Cherkasov, Yossef Av-Gay, Robert C. Brunham, Rachel C. Fernandez, B. Brett Finlay, Sarah P. Otto, B.F. Francis Ouellette, Patrick J. Keeling, Ann M. Rose, Robert E.W. Hancock y Steven J.M. Jones (2002,) Evidence That Plant-Like Genes in Chlamydia Species Reflect an Ancestral Relationship between Chlamydiaceae, Cyanobacteria, and the Chloroplast Genome Res., 12: pp 1159 – 1167. [3]
  • Okamoto, N. y Inouye, I. (2005), “A Secondary Symbiosis in Progress?”, Science, 310, p. 287
  • Gabaldón T. et al (2006), “Origin and evolution of the peroxisomal proteome”, Biology Direct, 1 (8),.

Scroll to Top